Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Small Methods ; 7(1): e2201201, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36408776

RESUMO

P2-phase layered cathode materials with distinguished electrochemical performance for sodium-ion batteries have attracted extensive attention, but they face critical challenges of transition metal layer sliding and unfavorable formation of hydration phase upon cycling, thus showing inferior long cycle life. Herein, a new approach is reported to modulate the local structure of P2 material by constructing a state-of-the-art in-plane BO3 triangle configuration ((Na0.67 Ni0.3 Co0.1 Mn0.6 O1.94 (BO3 )0.02 ). Both are unveiled experimentally and theoretically that such a structure can serve as a robust pillar to hold up the entire structure, by inhibiting the H2 O insertion upon Na (de)intercalation and preventing the structure from deformation, which significantly boost the long cycle capability of P2-materials. Meanwhile, more Na ions in the architecture are enabled to site on the edge sharing octahedrons (Nae ), thus benefiting the Na+ transportation. Consequently, the as produced material demonstrates an ultralow volume variation (1.8%), and an outstanding capacity retention of 80.1% after 1000 cycles at 2 C. This work sheds light on efficient architecture modulation of layered oxides through proper nonmetallic element doping.

2.
R Soc Open Sci ; 9(10): 220115, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36249341

RESUMO

The Wangcun fossil Lagerstätte in Hunan, South China, has yielded hundreds of fossilized embryos of Markuelia hunanensis representing different developmental stages. Internal tissues have only rarely been observed, impeding further understanding of the soft tissue anatomy, phylogenetic affinity and evolutionary significance of Markuelia. In this study, we used synchrotron radiation X-ray tomographic microscopy (SRXTM) to study a new collection of fossil embryos from the Wangcun fossil Lagerstätte. We describe specimens exhibiting a spectrum of preservation states, the best of which preserves palisade structures underneath the cuticle of the head and tail, distinct from patterns of centripetal mineralization of the cuticle and centrifugal mineralization of hypha-like structures, seen elsewhere in this specimen and other fossils within the same assemblage. Our computed tomographic reconstruction of these mineralization phases preserves the gross morphology of (i) longitudinal structures associated with the tail spines, which we interpret as the proximal ends of longitudinal muscles, and (ii) a ring-shaped structure internal to the introvert, which we interpret as a ring-shaped brain, as anticipated of the cycloneuralian affinity of Markuelia. This is the first record of a fossilized nervous system in a scalidophoran, and the first instance in Orsten-style preservation, opening the potential for further such records within this widespread mode of high-fidelity three-dimensional preservation.

3.
Onco Targets Ther ; 12: 8075-8084, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31632061

RESUMO

BACKGROUND: Recombination signal-binding protein J (RBPJ) is a crucial downstream effector of Notch signaling, which is involved cell proliferation, differentiation, and apoptosis. It plays an important role in tumorigenesis although the further studies and concrete evidence are still needed. Especially for endometrial carcinoma, the functions and mechanism of RBPJ are still elusive. METHODS: The RNA expressions of RBPJ, miR-155, NF-κB, TNF-α and κB-Ras1 were examined by rt-PCR, and their protein levels were determined by Western Blot. Their expressions were inhibited by transient transfection of related siRNAs. Wound healing and transwell invasion assays were performed in ECC003 cells for measuring the migration and invasion ability, respectively. The ROS levels were detected by flow cytometry with H2DCFDA. PURPOSE: This study was designed to investigate biological characteristics and molecular pathway of RBPJ in endometrial carcinoma cells, which may provide a potential therapeutic target for the treatments against endometrial carcinoma. RESULTS: It was shown in our study that the expression levels of RBPJ were significantly downregulated in different endometrial carcinoma cell lines. And a siRNA-mediated reduction of RBPJ enhanced the migration and invasion ability of ECC003 obviously. Besides, the results showed that the reactive oxygen species (ROS) levels increase when inhibiting RBPJ. To investigate the molecular pathway of RBPJ, we examined the expression of nuclear factor-κB (NF-κB), NF-κB inhibitor interacting Ras-like protein 1 (κB-Ras1), tumor necrosis factor-α (TNF-α) and miR-155. The results suggested that the expression of NF-κB and TNF-α significantly was promoted, while κB-Ras1 was inhibited. An upregulated expression was observed with miR-155 as well, which suggested the inhibition of NF-κB signal pathway was mediated by miR-155. Our results of Notch intracellular domain (NICD) knockdown also demonstrated that NICD is required for the inhibition of RBPJ on miR-155. And knockdown of miR-155 could inhibit the mobility of endometrial carcinoma cells. CONCLUSION: Our study suggested that RBPJ can inhibit the movability of endometrial carcinoma cells by miR-155/NF-κB/ROS pathway.

4.
Proc Biol Sci ; 284(1869)2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-29237861

RESUMO

Early Cambrian Pseudooides prima has been described from embryonic and post-embryonic stages of development, exhibiting long germ-band development. There has been some debate about the pattern of segmentation, but this interpretation, as among the earliest records of ecdysozoans, has been generally accepted. Here, we show that the 'germ band' of P. prima embryos separates along its mid axis during development, with the transverse furrows between the 'somites' unfolding into the polar aperture of the ten-sided theca of Hexaconularia sichuanensis, conventionally interpreted as a scyphozoan cnidarian; co-occurring post-embryonic remains of ecdysozoans are unrelated. We recognize H. sichuanensis as a junior synonym of P. prima as a consequence of identifying these two form-taxa as distinct developmental stages of the same organism. Direct development in P. prima parallels the co-occuring olivooids Olivooides, and Quadrapyrgites and Bayesian phylogenetic analysis of a novel phenotype dataset indicates that, despite differences in their tetra-, penta- and pseudo-hexa-radial symmetry, these hexangulaconulariids comprise a clade of scyphozoan medusozoans, with Arthrochites and conulariids, that all exhibit direct development from embryo to thecate polyp. The affinity of hexangulaconulariids and olivooids to extant scyphozoan medusozoans indicates that the prevalence of tetraradial symmetry and indirect development are a vestige of a broader spectrum of body-plan symmetries and developmental modes that was manifest in their early Phanerozoic counterparts.


Assuntos
Evolução Biológica , Cnidários/classificação , Cnidários/embriologia , Fósseis/anatomia & histologia , Animais , China , Filogenia
5.
Proc Biol Sci ; 284(1852)2017 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-28404779

RESUMO

Over the past two decades, the development of methods for visualizing and analysing specimens digitally, in three and even four dimensions, has transformed the study of living and fossil organisms. However, the initial promise that the widespread application of such methods would facilitate access to the underlying digital data has not been fully achieved. The underlying datasets for many published studies are not readily or freely available, introducing a barrier to verification and reproducibility, and the reuse of data. There is no current agreement or policy on the amount and type of data that should be made available alongside studies that use, and in some cases are wholly reliant on, digital morphology. Here, we propose a set of recommendations for minimum standards and additional best practice for three-dimensional digital data publication, and review the issues around data storage, management and accessibility.


Assuntos
Curadoria de Dados/normas , Conjuntos de Dados como Assunto , Disciplinas das Ciências Biológicas/estatística & dados numéricos , Reprodutibilidade dos Testes , Pesquisa/normas
6.
Nature ; 502(7472): 546-9, 2013 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-24132236

RESUMO

Conodonts are an extinct group of jawless vertebrates whose tooth-like elements are the earliest instance of a mineralized skeleton in the vertebrate lineage, inspiring the 'inside-out' hypothesis that teeth evolved independently of the vertebrate dermal skeleton and before the origin of jaws. However, these propositions have been based on evidence from derived euconodonts. Here we test hypotheses of a paraconodont ancestry of euconodonts using synchrotron radiation X-ray tomographic microscopy to characterize and compare the microstructure of morphologically similar euconodont and paraconodont elements. Paraconodonts exhibit a range of grades of structural differentiation, including tissues and a pattern of growth common to euconodont basal bodies. The different grades of structural differentiation exhibited by paraconodonts demonstrate the stepwise acquisition of euconodont characters, resolving debate over the relationship between these two groups. By implication, the putative homology of euconodont crown tissue and vertebrate enamel must be rejected as these tissues have evolved independently and convergently. Thus, the precise ontogenetic, structural and topological similarities between conodont elements and vertebrate odontodes appear to be a remarkable instance of convergence. The last common ancestor of conodonts and jawed vertebrates probably lacked mineralized skeletal tissues. The hypothesis that teeth evolved before jaws and the inside-out hypothesis of dental evolution must be rejected; teeth seem to have evolved through the extension of odontogenic competence from the external dermis to internal epithelium soon after the origin of jaws.


Assuntos
Evolução Biológica , Fósseis , Dente/anatomia & histologia , Vertebrados/anatomia & histologia , Vertebrados/classificação , Animais , Arcada Osseodentária , Nevada , Filogenia , Esqueleto , Síncrotrons , Tomografia por Raios X , Wyoming
7.
Proc Biol Sci ; 280(1757): 20130071, 2013 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-23446532

RESUMO

The Early Cambrian organism Olivooides is known from both embryonic and post-embryonic stages and, consequently, it has the potential to yield vital insights into developmental evolution at the time that animal body plans were established. However, this potential can only be realized if the phylogenetic relationships of Olivooides can be constrained. The affinities of Olivooides have proved controversial because of the lack of knowledge of the internal anatomy and the limited range of developmental stages known. Here, we describe rare embryonic specimens in which internal anatomical features are preserved. We also present a fuller sequence of fossilized developmental stages of Olivooides, including associated specimens that we interpret as budding ephyrae (juvenile medusae), all of which display a clear pentaradial symmetry. Within the framework of a cnidarian interpretation, the new data serve to pinpoint the phylogenetic position of Olivooides to the scyphozoan stem group. Hypotheses about scalidophoran or echinoderm affinities of Olivooides can be rejected.


Assuntos
Cifozoários/classificação , Animais , Cnidários/classificação , Equinodermos/classificação , Fósseis , Filogenia , Reprodução , Cifozoários/anatomia & histologia , Cifozoários/embriologia
8.
Evol Dev ; 12(2): 177-200, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-20433458

RESUMO

The reconstruction of ancestors is a central aim of comparative anatomy and evolutionary developmental biology, not least in attempts to understand the relationship between developmental and organismal evolution. Inferences based on living taxa can and should be tested against the fossil record, which provides an independent and direct view onto historical character combinations. Here, we consider the nature of the last common ancestor of living ecdysozoans through a detailed analysis of palaeoscolecids, an early and extinct group of introvert-bearing worms that have been proposed to be ancestral ecdysozoans. In a review of palaeoscolecid anatomy, including newly resolved details of the internal and external cuticle structure, we identify specific characters shared with various living nematoid and scalidophoran worms, but not with panarthropods. Considered within a formal cladistic context, these characters provide most overall support for a stem-priapulid affinity, meaning that palaeoscolecids are far-removed from the ecdysozoan ancestor. We conclude that previous interpretations in which palaeoscolecids occupy a deeper position in the ecdysozoan tree lack particular morphological support and rely instead on a paucity of preserved characters. This bears out a more general point that fossil taxa may appear plesiomorphic merely because they preserve only plesiomorphies, rather than the mélange of primitive and derived characters anticipated of organisms properly allocated to a position deep within animal phylogeny.


Assuntos
Anatomia Comparada , Artrópodes/classificação , Artrópodes/fisiologia , Evolução Molecular , Fósseis , Especiação Genética , Animais , Filogenia
9.
Proc Natl Acad Sci U S A ; 105(49): 19360-5, 2008 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-19047625

RESUMO

Fossilized embryos with extraordinary cellular preservation appear in the Late Neoproterozoic and Cambrian, coincident with the appearance of animal body fossils. It has been hypothesized that microbial processes are responsible for preservation and mineralization of organic tissues. However, the actions of microbes in preservation of embryos have not been demonstrated experimentally. Here, we show that bacterial biofilms assemble rapidly in dead marine embryos and form remarkable pseudomorphs in which the bacterial biofilm replaces and exquisitely models details of cellular organization and structure. The experimental model was the decay of cleavage stage embryos similar in size and morphology to fossil embryos. The data show that embryo preservation takes place in 3 distinct steps: (i) blockage of autolysis by reducing or anaerobic conditions, (ii) rapid formation of microbial biofilms that consume the embryo but form a replica that retains cell organization and morphology, and (iii) bacterially catalyzed mineralization. Major bacterial taxa in embryo decay biofilms were identified by using 16S rDNA sequencing. Decay processes were similar in different taphonomic conditions, but the composition of bacterial populations depended on specific conditions. Experimental taphonomy generates preservation states similar to those in fossil embryos. The data show how fossilization of soft tissues in sediments can be mediated by bacterial replacement and mineralization, providing a foundation for experimentally creating biofilms from defined microbial species to model fossilization as a biological process.


Assuntos
Bactérias/crescimento & desenvolvimento , Biofilmes , Evolução Biológica , Embrião não Mamífero/microbiologia , Fósseis , Aerobiose , Anaerobiose , Animais , Anthocidaris/embriologia , Autólise , Bactérias/genética , DNA Bacteriano , Embrião não Mamífero/ultraestrutura , Microscopia Eletrônica , Minerais
10.
Evol Dev ; 10(3): 339-49, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18460095

RESUMO

Experimental analyses of decay in a tunicate deuterostome and three lophotrochozoans indicate that the controls on decay and preservation of embryos, identified previously based on echinoids, are more generally applicable. Four stages of decay are identified regardless of the environment of death and decay. Embryos decay rapidly in oxic and anoxic conditions, although the gross morphology of embryos is maintained for longer under anoxic conditions. Under anoxic reducing conditions, the gross morphology of the embryos is maintained for the longest period of time, compatible with the timescale required for bacterially mediated mineralization of soft tissues. All four stages of decay were encountered under all environmental conditions, matching the spectrum of preservational qualities encountered in all fossil embryo assemblages. The preservation potential of embryos of deuterostomes and lophotrochozoans is at odds with the lack of such embryos in the fossil record. Rather, the fossil record of embryos, as sparse as it is, is dominated by forms interpreted as ecdysozoans, cnidarians, and stem-metazoans. The dearth of deuterostome and lophotrochozoan embryos may be explained by the fact that ecdysozoans, at least, tend to deposit their eggs in the sediment rather than through broadcast spawning. However, fossil embryos remain very rare and the main controlling factor on their fossilization may be the unique conspiracy of environmental conditions at a couple of sites. The preponderance of fossilized embryos of direct developers should not be used in evidence against the existence of indirect development at this time in animal evolutionary history.


Assuntos
Desenvolvimento Embrionário/fisiologia , Meio Ambiente , Fósseis , Invertebrados/anatomia & histologia , Invertebrados/embriologia , Paleontologia/métodos , Animais , Água do Mar/química , Especificidade da Espécie
11.
Nature ; 442(7103): 680-3, 2006 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-16900198

RESUMO

Fossilized embryos from the late Neoproterozoic and earliest Phanerozoic have caused much excitement because they preserve the earliest stages of embryology of animals that represent the initial diversification of metazoans. However, the potential of this material has not been fully realized because of reliance on traditional, non-destructive methods that allow analysis of exposed surfaces only, and destructive methods that preserve only a single two-dimensional view of the interior of the specimen. Here, we have applied synchrotron-radiation X-ray tomographic microscopy (SRXTM), obtaining complete three-dimensional recordings at submicrometre resolution. The embryos are preserved by early diagenetic impregnation and encrustation with calcium phosphate, and differences in X-ray attenuation provide information about the distribution of these two diagenetic phases. Three-dimensional visualization of blastomere arrangement and diagenetic cement in cleavage embryos resolves outstanding questions about their nature, including the identity of the columnar blastomeres. The anterior and posterior anatomy of embryos of the bilaterian worm-like Markuelia confirms its position as a scalidophoran, providing new insights into body-plan assembly among constituent phyla. The structure of the developing germ band in another bilaterian, Pseudooides, indicates a unique mode of germ-band development. SRXTM provides a method of non-invasive analysis that rivals the resolution achieved even by destructive methods, probing the very limits of fossilization and providing insight into embryology during the emergence of metazoan phyla.


Assuntos
Cnidários/embriologia , Fósseis , Microscopia/métodos , Síncrotrons , Tomografia por Raios X/métodos , Animais , Blastômeros/citologia , Blastômeros/ultraestrutura , China , Cnidários/anatomia & histologia , Cnidários/citologia , Cnidários/ultraestrutura , Embrião não Mamífero/anatomia & histologia , Embrião não Mamífero/citologia , Embrião não Mamífero/ultraestrutura , História Antiga , Larva/ultraestrutura , Sibéria , Fatores de Tempo , Raios X
12.
Evol Dev ; 8(2): 232-8, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16509901

RESUMO

We report new discoveries of embryos and egg capsules from the Lower Cambrian of Siberia, Middle Cambrian of Australia and Lower Ordovician of North America. Together with existing records, embryos have now been recorded from four of the seven continents. However, the new discoveries highlight secular and systematic biases in the fossil record of embryonic stages. The temporal window within which the embryos and egg capsules are found is of relatively short duration; it ends in the Early Ordovician and is roughly coincident with that of typical "Orsten"-type faunas. The reduced occurrence of such fossils has been attributed to reducing levels of phosphate in marine waters during the early Paleozoic, but may also be owing to the increasing depth of sediment mixing by infaunal metazoans. Furthermore, most records younger than the earliest Cambrian are of a single kind-large eggs and embryos of the priapulid-like scalidophoran Markuelia. We explore alternative explanations for the low taxonomic diversity of embryos recovered thus far, including sampling, size, anatomy, ecology, and environment, concluding that the preponderance of Markuelia embryos is due to its precocious development of cuticle at an embryonic stage, predisposing it to preservation through action as a substrate on which microbially mediated precipitation of authigenic calcium phosphate may occur. The fossil record of embryos may be limited to a late Neoproterozoic to early Ordovician snapshot that is subject to dramatic systematic bias. Together, these biases must be considered seriously in attempts to use the fossil record to arbitrate between hypotheses of developmental and life history evolution implicated in the origin of metazoan clades.


Assuntos
Embrião não Mamífero/anatomia & histologia , Fósseis , Animais , Austrália , Classificação , Microscopia Eletrônica de Varredura , Nevada , Sibéria
13.
Evol Dev ; 7(5): 468-82, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16174039

RESUMO

The fossil record provides a paucity of data on the development of extinct organisms, particularly for their embryology. The recovery of fossilized embryos heralds new insight into the evolution of development but advances are limited by an almost complete absence of phylogenetic constraint. Markuelia is an exception to this, known from cleavage and pre-hatchling stages as a vermiform and profusely annulated direct-developing bilaterian with terminal circumoral and posterior radial arrays of spines. Phylogenetic analyses have hitherto suggested assignment to stem-Scalidophora (phyla Kinorhyncha, Loricifera, Priapulida). We test this assumption with additional data and through the inclusion of additional taxa. The available evidence supports stem-Scalidophora affinity, leading to the conclusion that scalidophorans, cyclonerualians, and ecdysozoans are primitive direct developers, and the likelihood that scalidophorans are primitively metameric.


Assuntos
Fósseis , Invertebrados/embriologia , Filogenia , Animais , Invertebrados/ultraestrutura
14.
Nature ; 427(6971): 237-40, 2004 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-14724636

RESUMO

Comparative embryology is integral to uncovering the pattern and process of metazoan phylogeny, but it relies on the assumption that life histories of living taxa are representative of their antecedents. Fossil embryos provide a crucial test of this assumption and, potentially, insight into the evolution of development, but because discoveries so far lack phylogenetic constraint, their significance is moot. Here we describe a collection of embryos from the Middle and Late Cambrian period (500 million years ago) of Hunan, south China, that preserves stages of development from cleavage to the pre-hatching embryo of a direct-developing animal comparable to living Scalidophora (phyla Priapulida, Kinorhyncha, Loricifera). The latest-stage embryos show affinity to the Lower Cambrian embryo Markuelia, whose life-history strategy contrasts both with the primitive condition inferred for metazoan phyla and with many proposed hypotheses of affinity, all of which prescribe indirect development. Phylogenetic tests based on these embryological data suggest a stem Scalidophora affinity. These discoveries corroborate, rather than contradict, the predictions of comparative embryology, providing direct historical support for the view that the life-history strategies of living taxa are representative of their stem lineages.


Assuntos
Embrião não Mamífero/anatomia & histologia , Fósseis , Invertebrados/embriologia , Animais , China , Embriologia , Cabeça/anatomia & histologia , Invertebrados/anatomia & histologia , Invertebrados/classificação , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...